
RLE-DIB Format Specification
Vito Sartori, 2026

Abstract

This document describes the binary format used by the RLEDrawToDIB

rendering function identified at address 0x703A2290 of uxcore.dll, dis-
tributed with Windows Live Messenger 2009. The format stores one or more
palette-or-truecolor images as a packed bitstream, optionally arranged as an
N-slice (nine-patch) grid, and is consumed directly by a Windows themed-
controls renderer driven by DirectUI, a UI framework used internally by
Microsoft on Windows Live and Office products. This specification is derived
entirely from static analysis of the disassembled binar and verified against
a 516-file oracle corpus with pixel-perfect accuracy. It is intended to be
sufficient for a clean-room implementation of a parser and PNG exporter on
any platform.

1

RLE-DIB Format Specification Sartori

Contents

1 Introduction 4

2 Legal & Research Disclaimer 5

3 Conventions and Terminology 6

4 File Structure Overview 7

5 File Header (6 octets) 7
5.1 Magic Octets . 7
5.2 Image-Count Octet . 7
5.3 Format-Flags Octet . 7

5.3.1 size field width . 8
5.3.2 tile type Nibble . 8

5.4 DPI-Flags Octet . 8

6 Tile-Type Semantics 8
6.1 Sub-Image Count . 8
6.2 Grid Layout . 9
6.3 Fixed-Border Extraction . 10

7 Image-Record Table 10
7.1 Record Format . 10

7.1.1 Record Ordering . 11

8 Sub-Image Payload 11
8.1 Header Dword . 11

8.1.1 Geometry Fields . 11
8.1.2 Flag Bits . 11
8.1.3 row ptr width Field (bits[19:18]) 12

8.2 Pixel Data . 12

9 RLE Pixel Encoding 13
9.1 Encoding Modes . 13
9.2 Row Navigation Index . 14
9.3 Bit-Cursor . 15
9.4 Run-Length Bit Width (B) . 15
9.5 Channel Interleaving . 16
9.6 Token Format . 17

9.6.1 Type 0 – Solid Fill . 18
9.6.2 Type 1 – Delta-Positive Run 18
9.6.3 Type 2 – Delta-Negative Run 18
9.6.4 Type 3 – Literal Run . 19

2

RLE-DIB Format Specification Sartori

9.7 Alpha Meta-Decoder . 19
9.7.1 Alpha Type 0 / 3 – Transparent Run 20
9.7.2 Alpha Type 1 – Regular (Explicit Alpha) 21
9.7.3 Alpha Type 2 – Opaque Run 22
9.7.4 Alpha Prev Value . 22
9.7.5 Color Channel Persistence 22

9.8 Palette Post-Processing . 23
9.8.1 8-bit Palette Lookup . 23
9.8.2 5-bit Palette Lookup . 23
9.8.3 Grayscale Fallback . 23
9.8.4 Premultiplied Alpha . 24

10 DPI Scaling 24

11 Draw Flags 25

12 Rendering Pipeline 25
12.1 Single-Image Path . 25
12.2 N-Slice Path . 25

13 Color Sources 26
13.1 System-colour table . 26

14 Implementation Notes 26
14.1 Row Navigation . 26
14.2 Delta Wrap-Around . 27
14.3 Five-Bit Precision . 27
14.4 Alpha Buffer Persistence . 27
14.5 8-bit Palette Channel Order . 27
14.6 Channel-to-Colour Mapping for Direct RGB 27
14.7 Token Overflow . 27
14.8 Minimal PNG Exporter Recipe . 27

15 Security Considerations 28

16 Appendices 28

A Annotated Hex Dump (rle 4000 287 1033.bin) 28

B Worked Decode Example 30

C Reference Python Implementation 31

3

RLE-DIB Format Specification Sartori

1 Introduction

RLE-DIB is a compact, bitstream-based image format designed to store Win-
dows themed-control artwork. Its salient characteristics are:

• A 6-octet file header encoding image count, grid topology, and design DPI.

• Support for N-slice / nine-patch grid layouts (1x1 through 3x3) to allow
resolution-independent border rendering.

• Per-row RLE with four token types (solid fill, delta-up, delta-down, literal)
operating on a shared bit-cursor across all colour channels.

• Two precision modes: 5-bit (values * 8, range 0-248) and 8-bit (raw
values, range 0-255).

• Optional per-pixel alpha via a meta-decoder that wraps value tokens with
transparent/opaque/explicit-alpha run control.

• Palette mode where decoded channel values serve as indices into an external
colour table.

The format is consumed by the function RLEDrawToDIB, which draws directly
into a caller-supplied DIBSECTION (Device-Independent Bitmap Section).

4

RLE-DIB Format Specification Sartori

2 Legal & Research Disclaimer

This material is intended strictly for academic research, reverse engineering for
interoperability, and software preservation.

The author does not distribute, reproduce, or provide any proprietary software,
including components originally developed by Microsoft.

This work is independent, clean-room in nature, and is not affiliated with,
endorsed by, or supported by any original vendor.

Any trademarks, formats, or software referenced remain the property of their
respective owners.

5

RLE-DIB Format Specification Sartori

3 Conventions and Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY,
and OPTIONAL in this document are to be interpreted as described in RFC2119
and RFC8174 when, and only when, they appear in all capitals.

• Octet A unit of 8 bits

• Little-endian Multi-octet integers stored with least-significant octet first.

• bits[H:L] Inclusive bit-field, bit L is the least significant. bit[N] is short-
hand for bits[N:N].

• pixel ptr A pointer into a sub-image payload, positioned at the start of
pixel data (i.e., byte offset +4 from the start of the payload, immediately
after the header DWORD)

• run count The decoded run count field from a token. Pixel count for that
run is run count + 1.

• B Per-image run-length bit-width; see Section 9.4.

• run ptr width The width in octets of each entry in the per-image row-
navigation index; see Section 8.1.3.

All multi-octet integer fields are unsigned unless otherwise stated.

6

RLE-DIB Format Specification Sartori

4 File Structure Overview

+------------------+

| File Header | 6 octets

+------------------+

| Image Record 0 | [size_field_width octets: payload_size]

| Sub-Image Data | [payload_size octets]

+------------------+

| Image Record 1 |

| Sub-Image Data |

+------------------+

| ... |

+------------------+

| Image Record N-1 |

| Sub-Image Data |

+------------------+

N = image count * sub images per set

sub images per set is derived from the tile type nibble (Section 6).

5 File Header (6 octets)

5.1 Magic Octets

Octets 0-2 MUST be 0x52, 0x4C, 0x45 (ASCII "RLE").
A parser MUST reject any input whose first three octets do not match this

value.

5.2 Image-Count Octet

Octet 3:

• bits[6:0] represents the image count field, containing the number of
logical images (1–127);

• bit[7] is reserved and MUST be ignored by parsers.

image count MUST be at least 1. A value of 0 is invalid.

5.3 Format-Flags Octet

Octet 4:

• bits[1:0] contains the size field width minus1 field.

• bits[5:2] contains the tile type field.

• bits[7:6] is reserved and MUST be ignored by parsers.

7

RLE-DIB Format Specification Sartori

5.3.1 size field width

The size field width is defined as:
size field width = (size field width minus1) + 1

Valid range is 1–4 octets. This is the width of the payload-size field in every
image record (Section 7.1).

5.3.2 tile type Nibble

A 4-bit value in the range 0x0--0xF; see Section 6 for full semantics.

5.4 DPI-Flags Octet

Octet 5:

• bits[2:0] contains the dpi code field, indicating the design DPI code (see
table below);

• bits[7:3] is reserved and MUST be ignored by parsers.

dpi code Design DPI Scaling factor (at 96 dpi screen)
0 96 1.00 ×
1 120 1.25 ×
2 144 1.50 ×
3 168 1.75 ×
4 192 2.00 ×
5 216 2.25 ×
6 240 2.50 ×
7 – Not scalable

Table 1: Design DPI encoding

The design dpi value is obtained by applying the formula (dpi code+ 4) ∗ 24
(when dpi code is between 0–6).

6 Tile-Type Semantics

6.1 Sub-Image Count

The tile type nibble is a bitfield:

• bit[0] represents the left w component, indicating a fixed-width left col-
umn;

8

RLE-DIB Format Specification Sartori

• bit[1] represents the top h component, indicating a fixed-height top row;

• bit[2] represents the right w component, indicating a fixed-width right
column;

• bit[3] represents the bottom h component, indicating a fixed-height bottom
row.

The number of sub-images per logical image is derived as follows:

h slices = popcount
(
{left w, right w}

)
∈ {0, 1, 2}

v slices = popcount
(
{top h, bottom h}

)
∈ {0, 1, 2}

sub images per set = (h slices+ 1) (v slices+ 1).

Applying this to all possible nibble values, we have:

Nibble Sub-images Grid Flags set
0x0 1 1x1 (none)

0x1 2 2x1 left w

0x2 2 1x2 top h

0x3 4 2x2 left w, top h

0x4 2 2x1 right w

0x5 3 3x1 left w, right w

0x6 4 2x2 top h, right w

0x7 6 3x2 left w, top h, right w

0x8 2 1x2 bottom h

0x9 4 2x2 left w, bottom h

0xA 3 1x3 top h, bottom h

0xB 6 2x3 left w, top h, bottom h

0xC 4 2x2 right w, bottom h

0xD 6 3x2 left w, right w, bottom h

0xE 6 2x3 top h, right w, bottom h

0xF 9 3x3 left w, top h, right w, bottom h

Table 2: Nibble encoding for sub-image grid and flags

6.2 Grid Layout

Sub-images within a set are stored in row-major order (left to right, then top
to bottom). For a 3x3 (nibble=0xF) nine-patch the order is:

9

RLE-DIB Format Specification Sartori

Index Position
0 Top-left corner
1 Top edge (centre column)
2 Top-right corner
3 Left edge (middle row)
4 Centre
5 Right edge (middle row)
6 Bottom-left corner
7 Bottom edge (centre column)
8 Bottom-right corner

Table 3: Index to grid position mapping

6.3 Fixed-Border Extraction

When rendering a set with tile type != 0, a renderer MUST extract the four
fixed-border dimensions before splitting the destination rectangle. These are read
from the native width / native height of specific sub-images within the set:

If bit[0] (left w) is set: left width = width
(
sub image[0]

)
If bit[1] (top h) is set: top height = height

(
sub image[0]

)
If bit[2] (right w) is set: right width = width

(
sub image[last]

)
If bit[3] (bottom h) is set: bottom height = height

(
sub image[last]

)
7 Image-Record Table

7.1 Record Format

Every record has the following structure:

+--+

| payload_size (size_field_width octets)|

+--+

| sub-image data (payload_size octets) |

+--+

payload size is an unsigned integer of exactly size field width octets, stored
little-endian. It counts the octets that follow (i.e., it does NOT include itself).

10

RLE-DIB Format Specification Sartori

7.1.1 Record Ordering

Records are written in the following order:

Algorithm 1 Record emission

1: for i← 0 to image count− 1 do
2: for p← 0 to sub images per set− 1 do
3: write record for logical image i, patch p
4: end for
5: end for

A parser MUST read records in exactly this order. Total record count equals
exactly image count * sub images per set.

8 Sub-Image Payload

8.1 Header Dword

The first 4 octets of every sub-image payload form a little-endian 32-bit header
dword:

Bits Field Description
[0] palette mode See Section 8.1.2
[1] is 8bit See Section 8.1.2
[2] transparency hint See Section 8.1.2
[15:3] width Native width in pixels (0–8191)
[16] has alpha See Section 8.1.2
[17] (reserved) Always 0 in known corpus
[19:18] row ptr width-1 See Section 8.1.3
[31:20] height Native height in pixels (0–4095)

Table 4: Logical image header bit layout

8.1.1 Geometry Fields

• width (bits[15:3]) Native width of this sub-image in pixels. Decoded as:
width = (header dword >> 3) & 0x1FFF

• height (bits[31:20]) Native height of this sub-image in pixels. Decoded
as: height = header dword >> 20

8.1.2 Flag Bits

bit[0] — palette mode

11

RLE-DIB Format Specification Sartori

0: Direct RGB. Colour values are stored in the bitstream as indepen-
dent R, G, B channel values.

1: Palette mode. Decoded values are indices into an external colour
table. See Section 9.8.

bit[1] — is 8bit

0: 5-bit precision. Channel values are stored as 5-bit integers (0–31)
and are multiplied by 8 to produce 8-bit output, giving 32 levels: 0, 8,
16, . . . , 248.

1: 8-bit precision. Channel values are stored as full 8-bit integers
(0–255); no scaling is applied.

bit[2] — transparency hint

A rendering hint used to select the transparency colour parameter
passed to the blitter (0x00000000 or 0xFFFFFFFF). This bit does NOT
control the alpha decode path and does NOT indicate whether the
image has an alpha channel. Decoders producing standalone output
(e.g., PNG export) SHOULD ignore this bit.

bit[16] — has alpha

0: No alpha channel. The bitstream contains only colour tokens. All
output pixels are fully opaque (α = 255).

1: Alpha channel present. The bitstream is wrapped by an alpha meta-
decoder (Section 9.7) that provides per-pixel alpha values interleaved
with colour data.

bit[17] — (reserved)

Always 0 in the known corpus. Parsers SHOULD ignore this bit.

8.1.3 row ptr width Field (bits[19:18])

row_ptr_width = ((header_dword >> 18) & 0x3) + 1

Valid range: 1–4. This is the width in octets of each entry in the per-image
row-navigation index that immediately follows the header dword (see Section 9.2).

8.2 Pixel Data

Octets 4 through (payload size - 1) constitute the pixel data bitstream.
The first section of this bitstream is the row-navigation index (Section 9.2). The
remaining octets hold the RLE channel tokens (Section 9.6) and alpha meta-tokens
(Section 9.7).

A decoder MUST treat the pixel data as a bit-level stream read LSB-first
within each octet (Section Section 9.3).

12

RLE-DIB Format Specification Sartori

9 RLE Pixel Encoding

9.1 Encoding Modes

Three flag bits – palette mode (bit[0]), is 8bit (bit[1]), and has alpha

(bit[16]) – determine the encoding mode. The following combinations have been
observed:
Direct RGB, 5-bit, opaque (palette mode=0, is 8bit=0, has alpha=0):

Three colour channels R, G, B encoded per row with 5-bit tokens.

Output: R = ch0, G = ch1, B = ch2, A = 255.

Direct RGB, 5-bit, alpha (palette mode=0, is 8bit=0, has alpha=1):

Three colour channels R, G, B with alpha meta-decoder.

Output: R = ch0, G = ch1, B = ch2, A = alpha.

Direct RGB, 8-bit, opaque (palette mode=0, is 8bit=1, has alpha=0):

Three colour channels R, G, B encoded per row with 8-bit tokens.

Output: R = ch0, G = ch1, B = ch2, A = 255.

Direct RGB, 8-bit, alpha (palette mode=0, is 8bit=1, has alpha=1):

Three colour channels R, G, B with alpha meta-decoder.

Output: R = ch0, G = ch1, B = ch2, A = alpha.

Palette, 8-bit, opaque (palette mode=1, is 8bit=1, has alpha=0):

Two channels ch0, ch1 encoded per row with 8-bit tokens.

Output: grayscale from ch1, or palette lookup. See Section 9.8.

Palette, 8-bit, alpha (palette mode=1, is 8bit=1, has alpha=1):

Two channels ch0, ch1 with alpha meta-decoder.

Output: grayscale from ch1, or palette lookup + premultiplied alpha.
See Section 9.8.

palette mode is 8bit has alpha Channels Alpha
0 0 0 3 (R,G,B) none
0 0 1 3 (R,G,B) meta-decoder
0 1 0 3 (R,G,B) none
0 1 1 3 (R,G,B) meta-decoder
1 1 0 2 (ch0,ch1) none
1 1 1 2 (ch0,ch1) meta-decoder

Table 5: Channel summary

13

RLE-DIB Format Specification Sartori

NOTE: 5-bit palette mode (palette mode=1, is 8bit=0) is not present in the
known corpus but is handled by the reference implementation as a single channel
decoded with 5-bit tokens, palette index = value >> 3.

9.2 Row Navigation Index

The pixel data begins at pixel ptr (s̄ub-image payload byte offset +4). It
opens with a flat array of height entries, each row ptr width octets wide – the
row-navigation index.

Memory Layout:

pixel_ptr + 0 index[0]

pixel_ptr + row_ptr_width index[1]

...

pixel_ptr + (height-1)*row_ptr_width index[height-1]

Each index entry is an unsigned little-endian integer of row ptr width octets.
The entry encodes the byte offset from its own start position to the start of the
corresponding row data.

Row 0 (the topmost display row) is special: its data begins at the position of
the LAST index entry:

row_data_start[0] = pixel_ptr + (height - 1) * row_ptr_width

For subsequent rows (r ≥ 1):

entry_offset = pixel_ptr + (r - 1) * row_ptr_width

row_data_start[r] = entry_offset + index[r-1]

In other words, index[r-1] is a forward offset from the position of entry (r-1)
to the start of row r’s encoded data.

The last index entry (index[height-1]) serves double duty: its byte position
is the start of row 0’s bitstream, and its value (if read as an integer) is the forward
offset to the start of the hypothetical ”row after the last” – in practice, the value
points past all row data and is not used for navigation.

General formula (0-indexed):

Algorithm 2 Compute start position of row r encoded data

1: if r = 0 then
2: pos← pixel ptr+ (height− 1) · row ptr width

3: else
4: entry pos← pixel ptr+ (r − 1) · row ptr width

5: pos← entry pos+ read uint(entry pos, row ptr width)
6: end if
7: return pos

14

RLE-DIB Format Specification Sartori

Rows are stored in top-to-bottom display order: row 0 is the topmost scanline.
A decoder iterates r from 0 to height-1.

9.3 Bit-Cursor

The decoder MUST maintain a bit-cursor over the pixel data:

struct BitCursor {

uint8_t *byte_ptr; // pointer into the data octet array

uint8_t bit_off; // current bit offset within *byte_ptr (0-7)

};

Algorithm 3 Read N bits from the cursor (LSB-first)

1: value← 0
2: for i← 0 to N − 1 do

3: value← value |
(
((∗byte ptr≫ bit off) & 1)≪ i

)
4: bit off← bit off+ 1
5: if bit off = 8 then
6: byte ptr← byte ptr+ 1
7: bit off← 0
8: end if
9: end for

10: return value

This reads bits LSB-first within each octet, assembling a value with the first bit
read in the least-significant position.

9.4 Run-Length Bit Width (B)

B is computed once per sub-image from the native width:

15

RLE-DIB Format Specification Sartori

Algorithm 4 Compute B from native width

1: clamped← min(width, 255)
2: if clamped ≤ 1 then
3: return 1
4: else
5: B ← 1
6: x← (clamped− 1)≫ 1
7: while x > 0 do
8: B ← B + 1
9: x← x≫ 1

10: end while
11: return B
12: end if

This yields
B = 1 +

⌊
log2

(
min(width, 255)

)⌋
for width ≥ 2.

Examples:

width B
1 1
6 3
16 4
128 7
255 8
256 8 (clamped to 255)

Table 6: Examples of B computation

9.5 Channel Interleaving

Each row’s encoded data is a SINGLE sequential bitstream shared across all
channels. All channels for a row share one BitCursor, initialized to row data start[r].

The decoder operates pixel-column by pixel-column. For each column position,
it checks whether the cumulative decoded count for each channel has reached the
current column; if not, it reads new tokens until it has. Channels are decoded in
a round-robin fashion:

Direct RGB modes: ch0 (R), ch1 (G), ch2 (B)

Palette 8-bit modes: ch0, ch1

16

RLE-DIB Format Specification Sartori

Algorithm 5 Decode one row in 3-channel mode (no alpha)

1: cursor← BitCursor(row data start[r])
2: bufs← { [], [], [] }
3: x← 0
4: while x < width do
5: for c ∈ {0, 1, 2} do
6: while len(bufs[c]) ≤ x do
7: decode token(cursor, bufs[c])
8: end while
9: end for

10: x← min
(
len(bufs[0]), len(bufs[1]), len(bufs[2]), width

)
11: end while

After the loop, bufs[0][0..width-1] contains the R channel, bufs[1] the G
channel, and bufs[2] the B channel. For 2-channel palette mode, replace [0, 1,

2] with [0, 1].

IMPORTANT: When the alpha meta-decoder is active (has alpha=1), the
alpha meta-decoder wraps the interleaved channel decode. See Section 9.7 for the
complete algorithm.

9.6 Token Format

Every token begins with a 2-bit type field, followed by a B-bit run count field,
followed by a type-specific value field. All fields are read via the shared BitCursor

(Section 9.3).

type = read_bits(cursor, 2)

run_count = read_bits(cursor, B)

pixel_count = run_count + 1

The type field is encoded as follows:

type Mnemonic Description
0 FILL Solid fill: one value repeated
1 DELTA POS Delta-positive run
2 DELTA NEG Delta-negative run
3 LITERAL Literal run: per-pixel values

Table 7: Encoding of the type field

The token appends pixel count values to the channel’s output buffer. The
”prev” value used by delta types is the last value in the channel’s output buffer,
or 0 if the buffer is empty.

17

RLE-DIB Format Specification Sartori

9.6.1 Type 0 – Solid Fill

Algorithm 6 5-bit mode

1: fill5← read bits(cursor, 5)
2: output value← (fill5 · 8) & 0xFF
3: append pixel count copies of output value to the buffer

Algorithm 7 8-bit mode

1: fill8← read bits(cursor, 8)
2: append pixel count copies of fill8 to the buffer

9.6.2 Type 1 – Delta-Positive Run

A ”delta run” encodes pixel count successive pixels, each equal to the previ-
ous output pixel plus a small positive delta.

Algorithm 8 Decode DELTA token

1: delta bits← read bits(cursor, 3) + 1
2: if buffer is empty then
3: prev← 0
4: else
5: prev← last value in the channel buffer
6: end if
7: for i← 0 to pixel count− 1 do
8: raw← read bits(cursor, delta bits)
9: if 5-bit mode then

10: prev← (prev+ raw · 8) & 0xFF
11: else ▷ 8-bit mode
12: prev← (prev+ raw) & 0xFF
13: end if
14: append prev to the buffer
15: end for

9.6.3 Type 2 – Delta-Negative Run

This mode is identical to Type 1 (DELTA POS) except that the decoded delta is
subtracted from the previous value.

18

RLE-DIB Format Specification Sartori

Algorithm 9 Decode DELTA NEG token

1: delta bits← read bits(cursor, 3) + 1
2: if buffer is empty then
3: prev← 0
4: else
5: prev← last value in the channel buffer
6: end if
7: for i← 0 to pixel count− 1 do
8: raw← read bits(cursor, delta bits)
9: if 5-bit mode then

10: prev← (prev− raw · 8) & 0xFF
11: else ▷ 8-bit mode
12: prev← (prev− raw) & 0xFF
13: end if
14: append prev to the buffer
15: end for

9.6.4 Type 3 – Literal Run

Each pixel is stored independently.

Algorithm 10 Decode LITERAL token (5-bit mode)

1: for i← 0 to pixel count− 1 do
2: v5← read bits(cursor, 5)
3: append

(
v5 · 8

)
& 0xFF to the buffer

4: end for

Algorithm 11 Decode LITERAL token (8-bit mode)

1: for i← 0 to pixel count− 1 do
2: append read bits(cursor, 8) to the buffer
3: end for

9.7 Alpha Meta-Decoder

When has alpha (bit[16]) is set, the per-row bitstream is not read directly by
the channel interleaver. Instead, an alpha meta-decoder sits between the bitstream
and the channel decode, providing per-pixel alpha values and controlling when
colour tokens are consumed.

The meta-decoder reads a 2-bit alpha type from the cursor before each group
of pixels:

19

RLE-DIB Format Specification Sartori

alpha type Mnemonic Description
0 TRANSPARENT Transparent run (alpha=0, RGB=0)
1 REGULAR Explicit alpha via token decoder
2 OPAQUE Opaque run (alpha=255)
3 TRANSPARENT Transparent run (same as type 0)

Table 8: Encoding of the alpha type field

Pseudocode for a full row with 3-channel alpha:

Algorithm 12 Decode one row with alpha channel

1: cursor← BitCursor(row data start[r])
2: a buf← [] ▷ alpha output, persistent across segments
3: r buf← [] ▷ final R output
4: g buf← [] ▷ final G output
5: b buf← [] ▷ final B output
6: ch bufs← {[], [], []} ▷ persistent colour channel decode buffers
7: color pos← 0
8: col← 0
9: while col < width do

10: alpha type← read bits(cursor, 2)
11: if alpha type = 0 or alpha type = 3 then
12: ▷ Section 9.7.1 — transparent run
13: . . .
14: else if alpha type = 1 then
15: ▷ Section Section 9.7.2 — regular (explicit alpha)
16: . . .
17: else
18: ▷ Section Section 9.7.3 — opaque run
19: . . .
20: end if
21: end while
22: ▷ All buffers now have ≥ width entries; truncate to width

9.7.1 Alpha Type 0 / 3 – Transparent Run

A B-bit run count is read, giving pixel count = run count + 1 fully trans-
parent pixels:

Algorithm 13 Transparent run (alpha type = 0 or 3)

1: run count← read bits(cursor, B) + 1
2: append run count zeros to a buf

3: append run count zeros to r buf, g buf, b buf

20

RLE-DIB Format Specification Sartori

Colour channel decode buffers (ch bufs) are NOT consumed. Any previously
decoded but unconsumed colour values carry over to the next segment. color pos

is NOT advanced.

Algorithm 14 Advance column position
1: col← col+ run count

Implementation Warning

Transparent alpha runs do not consume colour tokens. Implementations that
advance the colour cursor during transparent segments will desynchronise and
produce incorrect output.

9.7.2 Alpha Type 1 – Regular (Explicit Alpha)

A full value token (Section 9.6) is decoded to produce alpha values. The token
is decoded directly into a buf (NOT into a temporary buffer), so the prev value
correctly carries from previous segments.

Algorithm 15 Compute produced alpha count

1: alpha before← len(a buf)
2: decode token(cursor, a buf) ▷ appends to a buf

3: count← len(a buf)− alpha before

Then the corresponding colour values are decoded via the interleaved channel
decoder. The channels MUST be advanced to (color pos + count):

Algorithm 16 Ensure colour channels decoded up to target position

1: interleave channels(cursor, ch bufs, target = color pos+ count)

The next count colour values from ch bufs are appended to the output:

Algorithm 17 Transfer decoded colour values and advance positions

1: for i← 0 to count− 1 do
2: r buf.append(ch bufs[0][color pos+ i])
3: g buf.append(ch bufs[1][color pos+ i])
4: b buf.append(ch bufs[2][color pos+ i])
5: end for
6: color pos← color pos+ count

7: col← col+ count

21

RLE-DIB Format Specification Sartori

9.7.3 Alpha Type 2 – Opaque Run

A B-bit run count is read, giving pixel count = run count + 1 fully opaque
pixels:

Algorithm 18 Read run length

1: run count← read bits(cursor, B) + 1

Colour values are decoded for this many pixels:

Algorithm 19 Opaque run: emit colour with alpha = 255

1: interleave channels(cursor, ch bufs, target = color pos+ run count)
2: for i← 0 to run count− 1 do
3: a buf.append(0xFF)
4: r buf.append(ch bufs[0][color pos+ i])
5: g buf.append(ch bufs[1][color pos+ i])
6: b buf.append(ch bufs[2][color pos+ i])
7: end for
8: color pos← color pos+ run count

9: col← col+ run count

9.7.4 Alpha Prev Value

In the reference implementation, the alpha token decoder reads the ”prev”
value from the last byte of the alpha output buffer. This means the prev value
carries across alpha segments:

• After a transparent run: prev = 0;

• After an opaque run: prev = 0xFF;

• After a regular segment: prev = last decoded alpha value.

Implementations MUST ensure that decode token for alpha type 1 reads prev
from the persistent alpha output buffer, NOT from a temporary per-segment
buffer. Failure to do this causes compounding delta errors in 8-bit alpha values.

9.7.5 Color Channel Persistence

The colour channel decode buffers (ch bufs) persist across all alpha segments
within a row. A token that produces excess colour values carries them into the
next segment. Transparent runs do NOT consume from the colour buffers.

The prev value for each colour channel is likewise persistent: it is the last value
appended to that channel’s buffer, regardless of which alpha segment produced it.

22

RLE-DIB Format Specification Sartori

9.8 Palette Post-Processing

When palette mode (bit[0]) is set, the decoded channel values are not direct
RGB. A post-processing step converts them to RGB output.

The reference implementation appears to dispatch to a routine with four ex-
ecution paths determined by (a) whether a palette pointer is available, and (b)
whether an alpha channel is present.

9.8.1 8-bit Palette Lookup

When a palette table is available and palette mode=1 and is 8bit=1, two
channels (ch0 and ch1) are decoded. The palette index is:

index = (ch0 << 8) | ch1

R = palette[index * 3 + 0]

G = palette[index * 3 + 1]

B = palette[index * 3 + 2]

The palette is a flat array of RGB triplets (3 bytes per entry).

9.8.2 5-bit Palette Lookup

When palette mode=1 and is 8bit=0, one channel is decoded. The palette
index is derived by dividing the decoded value by 8:

Algorithm 20 Palette lookup from decoded value

1: index← decoded value≫ 3 ▷ 0–31
2: R← palette[index · 3 + 0]
3: G← palette[index · 3 + 1]
4: B ← palette[index · 3 + 2]

9.8.3 Grayscale Fallback

When no palette table is available (palette pointer is NULL), the reference
implementation uses a grayscale fallback:

Algorithm 21 8-bit palette mode

1: R← G← B ← ch1 ▷ the second channel provides the gray value

IMPORTANT: ch0 MUST still be decoded to keep the bitstream in sync, but
its values are discarded in the grayscale fallback.

Algorithm 22 5-bit palette mode

1: R← G← B ← decoded value

23

RLE-DIB Format Specification Sartori

9.8.4 Premultiplied Alpha

When alpha is present in palette mode, the RGB values from the palette lookup
(or grayscale fallback) are premultiplied by the alpha value before output:

Algorithm 23 Apply premultiplied alpha to RGB

1: if alpha = 255 then
2: out R← R; out G← G; out B← B
3: else if alpha = 0 then
4: out R← 0; out G← 0; out B← 0
5: else
6: out R← ((R · alpha+ 0x80)≫ 8) & 0xFF
7: out G← ((G · alpha+ 0x80)≫ 8) & 0xFF
8: out B← ((B · alpha+ 0x80)≫ 8) & 0xFF
9: end if

NOTE: the reference implementation seems to use a faster approximation that
processes two channels in parallel:

Algorithm 24 Packed ARGB premultiplication step

1: ARGB← (alpha≪ 24) | (R≪ 16) | (G≪ 8) | B
2: br← (ARGB & 0x00FF00FF) · alpha+ 0x00800080

3: g← (G | 0x01000000) · alpha+ 0x00800080

4: br← ((br≫ 8) & 0x00FF00FF) + (br≫ 8 & 0x00FF00FF)
5: g← ((g≫ 8) & 0x0000FF00)

For a standalone PNG exporter, the simple per-channel formula above is suf-
ficient.

IMPORTANT: Direct RGB modes (palette mode=0) with alpha do NOT
apply premultiplied alpha in the decoder. The decoded R, G, B values are the final
output values, and the alpha channel is stored separately. Premultiplied alpha is
a palette-mode-only post-processing step.

10 DPI Scaling

When dpi code != 7 and the draw-flags parameter does NOT have bit 10
(0x400) set, the sub-image dimensions MUST be scaled before layout:

24

RLE-DIB Format Specification Sartori

Algorithm 25 Compute rendered dimensions from DPI scaling

1: scale x← screen dpi x / design dpi

2: scale y← screen dpi y / design dpi

3: rendered width← ⌊native width · scale x+ 0.5⌋
4: rendered height← ⌊native height · scale y+ 0.5⌋

Rounding MUST use round-half-up (equivalent to floor(x + 0.5)).
Additionally, a cross-platform PNG exporter can ignore DPI scaling entirely

and output images at their native resolution.

11 Draw Flags

The draw flags parameter (uint32) passed to RLEDrawToDIB controls render-
ing behaviour. Relevant bits:

Bit Mask Name Effect
8 0x0100 ALPHA DRAW Enable alpha/transparent rendering
10 0x0400 NO DPI SCALE Suppress DPI scaling (Section 10)

Table 9: Control flag bits

A standalone converter does not need draw flags; they control blitter behaviour
in the Windows rendering pipeline.

12 Rendering Pipeline

12.1 Single-Image Path

When sub images per set == 1 (tile type == 0x0):

1. Retrieve sub-image pointer via the record table.

2. Parse header, determine mode.

3. Decode all rows and assemble RGBA output.

12.2 N-Slice Path

When sub images per set > 1:

1. Extract fixed-border dimensions (Section 6.3).

2. Split the destination rectangle into up to 9 tile rects.

25

RLE-DIB Format Specification Sartori

3. For each tile rect in row-major order, decode and blit the corresponding
sub-image.

A standalone converter MAY output each sub-image as a separate PNG file
rather than compositing them.

13 Color Sources

The reference renderer recognises three colour-source modes:

type Meaning
0 No special colour source; pixel data is self-contained.
1 Custom palette: provided by the caller.
2 System colours: a table of RGB triplets built from GetSysColor indices 0–30.

Table 10: Special colour source type

13.1 System-colour table

The system colour table is a flat array of 31 RGB triplets (93 bytes), returned
by GetSysColor, one entry per index 0-30 in order. Entry i occupies bytes [i*3,
i*3+1, i*3+2] as R, G, B.

A cross-platform implementation MAY substitute equivalent platform colour
lookup mechanisms. When no palette is available, the grayscale fallback (Sec-
tion 9.8.3) produces usable output.

14 Implementation Notes

14.1 Row Navigation

To navigate to row r (0-indexed, top-to-bottom):

Algorithm 26 Compute start position of row r (little-endian index)

1: if r = 0 then
2: pos← pixel ptr+ (height− 1) · row ptr width

3: else
4: entry pos← pixel ptr+ (r − 1) · row ptr width

5: pos← entry pos+ read uint le(entry pos, row ptr width)
6: end if
7: return pos

26

RLE-DIB Format Specification Sartori

14.2 Delta Wrap-Around

Delta operations use 8-bit unsigned wrap-around arithmetic ((prev +/- delta)

& 0xFF). Implementors MUST NOT clamp delta results.

14.3 Five-Bit Precision

The multiplication by 8 means that 5-bit encoded images can represent only
32 distinct channel levels (0, 8, 16, ..., 248).

14.4 Alpha Buffer Persistence

The alpha output buffer and colour channel decode buffers MUST persist for
the entire row. Creating fresh buffers per alpha segment causes incorrect prev

values.

14.5 8-bit Palette Channel Order

In 8-bit palette mode, the grayscale value comes from ch1 (the SECOND
decoded channel), not ch0. ch0 MUST still be decoded to keep the bit cursor
synchronized.

14.6 Channel-to-Colour Mapping for Direct RGB

The three decoded channels map to: ch0 = Red, ch1 = Green, ch2 = Blue.
For PNG output in RGBA format, this maps directly: R=ch0, G=ch1, B=ch2.
(The reference implementation writes to a BGRX-32 DIB where the DWORD
0xFF ch0 ch1 ch2 places ch0 at the R byte position and ch2 at the B byte position
in the BGRA memory layout.)

14.7 Token Overflow

A decoded token may produce more pixels than the remaining columns in the
row. A decoder MUST clip each channel buffer to exactly width pixels and MUST
NOT fail.

14.8 Minimal PNG Exporter Recipe

1. Read file header; verify magic; parse image count, size field width, tile type.

2. For each of the (image count * sub images per set) records:

2.1 Read payload size (size field width octets, LE).

2.2 Read payload size octets as the sub-image payload.

3. For each sub-image payload:

27

RLE-DIB Format Specification Sartori

3.1 Parse the 4-octet header dword; extract width, height, flags, row ptr width

(Section 8.1).

3.2 Determine encoding mode (Section 9.1).

3.3 Compute B (Section 9.4).

3.4 Navigate to each row r = 0 .. height-1 (Section 9.2).

3.5 For each row, decode channels (Section 9.5, Section 9.6).
If has alpha, use the alpha meta-decoder (Section 9.7).
If palette mode, apply post-processing (Section 9.8).

3.6 Write the RGBA row to the output image.

15 Security Considerations

• Input validation: A parser MUST verify the magic bytes (Section 5.1) before
processing any other field. A parser MUST NOT access pixel data beyond
the bounds indicated by payload size.

• Integer overflow: width (max 8191) and height (max 4095) are each bounded
by 13 and 12 bits respectively; their product (max ≈ 33.5 million) fits in a
32-bit unsigned integer. Implementations MUST check that computed buffer
sizes do not exceed available memory before allocation.

• Bitstream over-read: Because tokens may straddle octet boundaries, a de-
coder MUST ensure the BitCursor does not advance past pixel ptr +

payload size - 4. Reads beyond this boundary produce undefined results.

• Malformed run counts: A run of run count + 1 pixels where run count =
2B−1 could produce up to min(256, width) pixels per token. The decoder
MUST track the cumulative pixel count per channel and MUST NOT write
beyond the end of the row buffer.

• Row-navigation index bounds: Each index entry value, when added to the
entry’s own address, MUST yield an address within the bounds of the sub-
image payload.

16 Appendices

A Annotated Hex Dump (rle 4000 287 1033.bin)

A small single-tile corpus file (76 bytes). Renders as a 7×7 diamond-like shape
in a single colour (R=40, G=72, B=136) on a transparent background. Mode:
direct RGB, 5-bit precision, alpha.

28

RLE-DIB Format Specification Sartori

File header and record framing

Offset Hex Annotation

0000 52 4C 45 Magic “RLE”
0003 01 image count = 1
0004 00 size field width=1,

tile type=0x0 (1×1)
0005 00 dpi code=0 (96 DPI)

Record 0
Offset Hex Annotation

0006 45 payload size = 69

Sub-image payload (69 bytes, offset 0x07–0x4B)

Offset Hex Annotation

0007 38 00 71 00 Header dword = 0x00710038

Header decode (0x00710038 in binary, LSB first):

Field Value Meaning

bit[0] 0 palette mode=0 (direct RGB)
bit[1] 0 is 8bit=0 (5-bit precision)
bit[2] 0 transparency hint=0
bits[15:3] 7 width=7 pixels
bit[16] 1 has alpha=1
bit[17] 0 (reserved)

bits[19:18] 0 row ptr width=1
bits[31:20] 7 height=7 pixels

B = 3 (for width=7: ⌊log2(6)⌋+ 1 = 3).

Row navigation index (7 entries × 1 byte, offset 0x0B–0x11)

Offset Hex Annotation

000B 10 index[0] = 16
000C 19 index[1] = 25
000D 1E index[2] = 30
000E 23 index[3] = 35
000F 28 index[4] = 40
0010 31 index[5] = 49
0011 86 index[6] = 134

Row data positions (Section 9.2):

Row 0: pixel_ptr + 6*1 = offset 0x11 (last index entry)

Row 1: 0x0B + 16 = offset 0x1B

Row 2: 0x0C + 25 = offset 0x25

Row 3: 0x0D + 30 = offset 0x2B

Row 4: 0x0E + 35 = offset 0x31

Row 5: 0x0F + 40 = offset 0x37

Row 6: 0x10 + 49 = offset 0x41

29

RLE-DIB Format Specification Sartori

Encoded pixel data (offset 0x11–0x4B)

0011 86 14 92 48 44 86 14 92 48 04 0A 15 94 50 04 0A

0021 15 94 50 04 40 C2 02 13 8C 00 44 A1 82 12 8A 04

0031 40 C2 02 13 8C 00 0A 15 94 50 04 0A 15 94 50 04

0041 86 14 92 48 44 86 14 92 48 04 FE

B Worked Decode Example

This example traces the decode of Row 0 of rle 4000 287 1033.bin (Ap-
pendix A). Mode: 5-bit, direct RGB, has alpha=1, B = 3, width=7.

Row 0 bitstream starts at offset 0x11. Raw bytes: 86 14 92 48 44.

Bit order

The bit-cursor reads LSB-first within each byte:
Byte Bits read (LSB-first)

0x86 0 1 1 0 0 0 0 1
0x14 0 0 1 0 1 0 0 0
0x92 0 1 0 0 1 0 0 1
0x48 0 0 0 1 0 0 1 0
0x44 0 0 1 0 0 0 1 0

(Note: bit 0 is the rightmost bit in the hex representation, but the bits are shown
left-to-right here in the order they are read.)

Step-by-step decode (Row 0)

Step 1 (bit 0). Read alpha type (2 bits): 10b = 2 (OPAQUE).
Read run count (3 bits): 001b = 1 ⇒ pixel count = 2.

Step 2 (bit 5). Decode 2 pixels of colour via interleaved tokens.

ch0 (R) token: type=2 bits→ 00b=0 (FILL), run=3 bits→ 001b=1 (pixel count=2),
val5=5 bits → 00101b=5 ⇒ value=40.
R = [40, 40]

ch1 (G) token: type=00b=0 (FILL), run=001b=1 (pixel count=2), val5=01001b=9
⇒ value=72.
G = [72, 72]

ch2 (B) token: type=00b=0 (FILL), run=001b=1 (pixel count=2), val5=10001b=17

⇒ value=136.

B = [136, 136]

Output pixels 0–1: R=40, G=72, B=136, A=255 (opaque).

30

RLE-DIB Format Specification Sartori

Step 3 (bit 35). Read alpha type (2 bits): 00b = 0 (TRANSPARENT).
Read run count (3 bits): 010b = 2 ⇒ pixel count = 3.
Output pixels 2–4: R=0, G=0, B=0, A=0 (transparent).
color pos stays at 2 (no colour tokens consumed).

Step 4 (bit 40). Read alpha type (2 bits): 10b = 2 (OPAQUE).
Read run count (3 bits): 001b = 1 ⇒ pixel count = 2.

ch0 (R) token: FILL, run=1, val5=5 ⇒ value=40. R = [40, 40]

ch1 (G) token: FILL, run=1, val5=9 ⇒ value=72. G = [72, 72]

ch2 (B) token: FILL, run=1, val5=17 ⇒ value=136. B = [136, 136]

Output pixels 5–6: R=40, G=72, B=136, A=255 (opaque).

col = 7 = width, row complete. 75 bits consumed (9 bytes + 3 bits).

Final Row 0

Pixel R G B A

0 40 72 136 255

1 40 72 136 255

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 40 72 136 255

6 40 72 136 255

Rendered 7×7 image

The full 7×7 image (. = transparent, # = opaque 284888):

. . . #

. # #

. # # # # # .

. . # # # . .

. # # # # # .

. # #

. . . #

C Reference Python Implementation

The following is a complete, dependency-free Python 3 implementation (re-
quires only the standard library: struct, zlib, os, sys, argparse). It has been
verified to produce pixel-perfect output for all 380 single-tile files in the corpus
(380/380 exact matches against oracle output).

Usage:

31

RLE-DIB Format Specification Sartori

python3 rle to png.py <input.bin> [-o output dir] [-p palette]

#!/usr/bin/env python3

"""

rle_to_png.py -- Convert RLE-DIB files to PNG images.

Decodes the proprietary "RLE" image format used for Windows

themed-control artwork. Despite the name, the encoding is NOT

standard RLE -- it uses a custom bitstream with solid fills,

signed deltas, and per-pixel literals across independently

interleaved channels.

Encoding variants:

5-bit mode (header bit1=0): values are 5-bit * 8, range 0-248

8-bit mode (header bit1=1): values are full 8-bit, range 0-255

Channel configurations:

3-channel direct RGB (bit0=0): channels decoded as R, G, B

1-channel palette (bit0=1, 5-bit): palette index = value >> 3

2-channel palette (bit0=1, 8-bit): palette index

= (ch0 << 8) | ch1

Alpha channel (bit16=1) is handled by a meta-decoder above the

value tokens.

"""

import sys

import os

import struct

import zlib

import argparse

--- Minimal pure-Python PNG writer (no external dependencies) ---

def _png_chunk(tag: bytes, data: bytes) -> bytes:

length = struct.pack('>I', len(data))

crc = struct.pack('>I', zlib.crc32(tag + data) & 0xFFFFFFFF)

return length + tag + data + crc

def write_png(path, width, height, rgba_rows):

"""Write an RGBA PNG file."""

signature = b'\x89PNG\r\n\x1a\n'
ihdr_data = (struct.pack('>II', width, height)

+ bytes([8, 6, 0, 0, 0]))

32

RLE-DIB Format Specification Sartori

ihdr = _png_chunk(b'IHDR', ihdr_data)

raw = b''.join(b'\x00' + row for row in rgba_rows)

compressed = zlib.compress(raw, 9)

idat = _png_chunk(b'IDAT', compressed)

iend = _png_chunk(b'IEND', b'')
with open(path, 'wb') as f:

f.write(signature + ihdr + idat + iend)

--- Bit-cursor (reads LSB-first within each octet) ---

class BitCursor:

__slots__ = ('data', 'byte_pos', 'bit_off')

def __init__(self, data, byte_pos):

self.data = data

self.byte_pos = byte_pos

self.bit_off = 0

def read_bits(self, n):

value = 0

for i in range(n):

if self.byte_pos < len(self.data):

bit = (self.data[self.byte_pos]

>> self.bit_off) & 1

else:

bit = 0

value |= bit << i

self.bit_off += 1

if self.bit_off == 8:

self.byte_pos += 1

self.bit_off = 0

return value

--- Run-length bit-width B ---

def compute_B(width):

clamped = min(width, 255)

if clamped <= 1:

return 1

B = 1

x = (clamped - 1) >> 1

while x > 0:

B += 1

x >>= 1

return B

33

RLE-DIB Format Specification Sartori

--- Token-level decoder ---

def _decode_token(cursor, buf, B, is_8bit):

prev = buf[-1] if buf else 0

token_type = cursor.read_bits(2)

run_count = cursor.read_bits(B)

pixel_count = run_count + 1

if token_type == 0: # SOLID FILL

if is_8bit:

val = cursor.read_bits(8)

else:

val = (cursor.read_bits(5) * 8) & 0xFF

buf.extend([val] * pixel_count)

elif token_type == 1: # DELTA POSITIVE

db = cursor.read_bits(3) + 1

for _ in range(pixel_count):

raw = cursor.read_bits(db)

if is_8bit:

prev = (prev + raw) & 0xFF

else:

prev = (prev + raw * 8) & 0xFF

buf.append(prev)

elif token_type == 2: # DELTA NEGATIVE

db = cursor.read_bits(3) + 1

for _ in range(pixel_count):

raw = cursor.read_bits(db)

if is_8bit:

prev = (prev - raw) & 0xFF

else:

prev = (prev - raw * 8) & 0xFF

buf.append(prev)

else: # LITERAL

for _ in range(pixel_count):

if is_8bit:

val = cursor.read_bits(8)

else:

val = (cursor.read_bits(5) * 8) & 0xFF

buf.append(val)

prev = val

34

RLE-DIB Format Specification Sartori

--- N-channel interleaver ---

def _interleave_nch(cursor, ch_bufs, target, B, is_8bit):

n_ch = len(ch_bufs)

x = min(len(b) for b in ch_bufs)

while x < target:

for c in range(n_ch):

while len(ch_bufs[c]) <= x:

_decode_token(cursor, ch_bufs[c], B, is_8bit)

x = min(len(b) for b in ch_bufs)

x = min(x, target)

--- Per-row decoders (no alpha) ---

def _decode_row_3ch(cursor, width, B, is_8bit):

bufs = [[], [], []]

x = 0

while x < width:

for c in range(3):

while len(bufs[c]) <= x:

_decode_token(cursor, bufs[c], B, is_8bit)

x = min(len(bufs[0]), len(bufs[1]),

len(bufs[2]))

x = min(x, width)

return bufs[0][:width], bufs[1][:width], bufs[2][:width]

def _decode_row_1ch(cursor, width, B, is_8bit):

buf = []

while len(buf) < width:

_decode_token(cursor, buf, B, is_8bit)

return buf[:width]

def _decode_row_2ch(cursor, width, B):

bufs = [[], []]

x = 0

while x < width:

for c in range(2):

while len(bufs[c]) <= x:

_decode_token(cursor, bufs[c], B,

is_8bit=True)

x = min(len(bufs[0]), len(bufs[1]))

x = min(x, width)

return bufs[0][:width], bufs[1][:width]

35

RLE-DIB Format Specification Sartori

--- Per-row decoders (with alpha meta-decoder) ---

def _decode_row_3ch_alpha(cursor, width, B, is_8bit):

r_buf, g_buf, b_buf, a_buf = [], [], [], []

ch_bufs = [[], [], []]

color_pos = 0

col = 0

while col < width:

alpha_type = cursor.read_bits(2)

if alpha_type == 0 or alpha_type == 3:

run = cursor.read_bits(B) + 1

n = min(run, width - col)

a_buf.extend([0] * n)

r_buf.extend([0] * n)

g_buf.extend([0] * n)

b_buf.extend([0] * n)

col += run

elif alpha_type == 1:

ab = len(a_buf)

_decode_token(cursor, a_buf, B, is_8bit)

count = len(a_buf) - ab

target = color_pos + count

_interleave_nch(cursor, ch_bufs, target,

B, is_8bit)

n = min(count, width - col)

for i in range(n):

r_buf.append(ch_bufs[0][color_pos + i])

g_buf.append(ch_bufs[1][color_pos + i])

b_buf.append(ch_bufs[2][color_pos + i])

color_pos += count

col += count

else: # alpha_type == 2

run = cursor.read_bits(B) + 1

target = color_pos + run

_interleave_nch(cursor, ch_bufs, target,

B, is_8bit)

n = min(run, width - col)

for i in range(n):

a_buf.append(0xFF)

r_buf.append(ch_bufs[0][color_pos + i])

g_buf.append(ch_bufs[1][color_pos + i])

b_buf.append(ch_bufs[2][color_pos + i])

color_pos += run

col += run

return (r_buf[:width], g_buf[:width],

b_buf[:width], a_buf[:width])

36

RLE-DIB Format Specification Sartori

def _decode_row_1ch_alpha(cursor, width, B, is_8bit):

val_buf, a_buf = [], []

ch_buf = []

color_pos = 0

col = 0

while col < width:

alpha_type = cursor.read_bits(2)

if alpha_type == 0 or alpha_type == 3:

run = cursor.read_bits(B) + 1

n = min(run, width - col)

a_buf.extend([0] * n)

val_buf.extend([0] * n)

col += run

elif alpha_type == 1:

ab = len(a_buf)

_decode_token(cursor, a_buf, B, is_8bit)

count = len(a_buf) - ab

while len(ch_buf) < color_pos + count:

_decode_token(cursor, ch_buf, B, is_8bit)

n = min(count, width - col)

for i in range(n):

val_buf.append(ch_buf[color_pos + i])

color_pos += count

col += count

else:

run = cursor.read_bits(B) + 1

while len(ch_buf) < color_pos + run:

_decode_token(cursor, ch_buf, B, is_8bit)

n = min(run, width - col)

for i in range(n):

a_buf.append(0xFF)

val_buf.append(ch_buf[color_pos + i])

color_pos += run

col += run

return val_buf[:width], a_buf[:width]

def _decode_row_2ch_alpha(cursor, width, B):

ch0_buf, ch1_buf, a_buf = [], [], []

ch_bufs = [[], []]

color_pos = 0

col = 0

while col < width:

alpha_type = cursor.read_bits(2)

if alpha_type == 0 or alpha_type == 3:

37

RLE-DIB Format Specification Sartori

run = cursor.read_bits(B) + 1

n = min(run, width - col)

a_buf.extend([0] * n)

ch0_buf.extend([0] * n)

ch1_buf.extend([0] * n)

col += run

elif alpha_type == 1:

ab = len(a_buf)

_decode_token(cursor, a_buf, B, is_8bit=True)

count = len(a_buf) - ab

target = color_pos + count

_interleave_nch(cursor, ch_bufs, target,

B, is_8bit=True)

n = min(count, width - col)

for i in range(n):

ch0_buf.append(

ch_bufs[0][color_pos + i])

ch1_buf.append(

ch_bufs[1][color_pos + i])

color_pos += count

col += count

else:

run = cursor.read_bits(B) + 1

target = color_pos + run

_interleave_nch(cursor, ch_bufs, target,

B, is_8bit=True)

n = min(run, width - col)

for i in range(n):

a_buf.append(0xFF)

ch0_buf.append(

ch_bufs[0][color_pos + i])

ch1_buf.append(

ch_bufs[1][color_pos + i])

color_pos += run

col += run

return ch0_buf[:width], ch1_buf[:width], a_buf[:width]

--- Palette / color conversion ---

def _premultiply(c, a):

return ((c * a + 0x80) >> 8) & 0xFF

--- Decode one sub-image payload ---

def decode_subimage(payload, palette=None):

38

RLE-DIB Format Specification Sartori

if len(payload) < 4:

raise ValueError('Sub-image payload too short')

hdr = struct.unpack_from('<I', payload, 0)[0]

palette_mode = (hdr >> 0) & 1

is_8bit = (hdr >> 1) & 1

has_alpha = (hdr >> 16) & 1

width = (hdr >> 3) & 0x1FFF

row_ptr_width = ((hdr >> 18) & 0x3) + 1

height = hdr >> 20

if width == 0 or height == 0:

return (width, height, [])

B = compute_B(width)

index_start = 4

def row_cursor(r):

if r == 0:

pos = (index_start

+ (height - 1) * row_ptr_width)

else:

entry_off = (index_start

+ (r - 1) * row_ptr_width)

entry_val = int.from_bytes(

payload[entry_off:entry_off

+ row_ptr_width], 'little')
pos = entry_off + entry_val

return BitCursor(payload, pos)

rgba_rows = []

for r in range(height):

cursor = row_cursor(r)

row_bytes = bytearray(width * 4)

if palette_mode == 0:

if has_alpha:

rc, gc, bc, ac = \

_decode_row_3ch_alpha(

cursor, width, B,

bool(is_8bit))

for x in range(width):

row_bytes[x*4] = rc[x]

row_bytes[x*4+1] = gc[x]

row_bytes[x*4+2] = bc[x]

row_bytes[x*4+3] = ac[x]

39

RLE-DIB Format Specification Sartori

else:

rc, gc, bc = _decode_row_3ch(

cursor, width, B, bool(is_8bit))

for x in range(width):

row_bytes[x*4] = rc[x]

row_bytes[x*4+1] = gc[x]

row_bytes[x*4+2] = bc[x]

row_bytes[x*4+3] = 255

else:

if is_8bit:

if has_alpha:

c0, c1, ac = \

_decode_row_2ch_alpha(

cursor, width, B)

else:

c0, c1 = _decode_row_2ch(

cursor, width, B)

ac = None

for x in range(width):

if palette is not None:

idx = (c0[x] << 8 | c1[x]) * 3

pr = (palette[idx]

if idx < len(palette)

else 0)

pg = (palette[idx + 1]

if idx+1 < len(palette)

else 0)

pb = (palette[idx + 2]

if idx+2 < len(palette)

else 0)

else:

pr = pg = pb = c1[x]

if ac is not None:

a = ac[x]

if a == 0:

pr = pg = pb = 0

elif a != 0xFF:

pr = _premultiply(pr, a)

pg = _premultiply(pg, a)

pb = _premultiply(pb, a)

row_bytes[x*4+3] = a

else:

row_bytes[x*4+3] = 255

row_bytes[x*4] = pr

row_bytes[x*4+1] = pg

row_bytes[x*4+2] = pb

else:

40

RLE-DIB Format Specification Sartori

if has_alpha:

vc, ac = _decode_row_1ch_alpha(

cursor, width, B, False)

else:

vc = _decode_row_1ch(

cursor, width, B, False)

ac = None

for x in range(width):

if palette is not None:

idx = (vc[x] >> 3) * 3

pr = (palette[idx]

if idx < len(palette)

else 0)

pg = (palette[idx + 1]

if idx+1 < len(palette)

else 0)

pb = (palette[idx + 2]

if idx+2 < len(palette)

else 0)

else:

pr = pg = pb = vc[x]

if ac is not None:

a = ac[x]

if a == 0:

pr = pg = pb = 0

elif a != 0xFF:

pr = _premultiply(pr, a)

pg = _premultiply(pg, a)

pb = _premultiply(pb, a)

row_bytes[x*4+3] = a

else:

row_bytes[x*4+3] = 255

row_bytes[x*4] = pr

row_bytes[x*4+1] = pg

row_bytes[x*4+2] = pb

rgba_rows.append(bytes(row_bytes))

return (width, height, rgba_rows)

--- Parse the file header and image records ---

TILE_COUNT_TABLE = [

1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 3, 6, 4, 6, 6, 9

]

41

RLE-DIB Format Specification Sartori

def parse_rle_file(data):

if len(data) < 6:

raise ValueError('File too short')
if data[0:3] != b'RLE':

raise ValueError(

f'Bad magic: {data[0:3]!r}')

image_count = data[3] & 0x7F

size_field_width = (data[4] & 0x3) + 1

tile_type = (data[4] >> 2) & 0xF

tile_count = TILE_COUNT_TABLE[tile_type]

pos = 6

records = []

for i in range(image_count):

for p in range(tile_count):

if pos + size_field_width > len(data):

raise ValueError('Truncated')
payload_size = int.from_bytes(

data[pos:pos + size_field_width],

'little')
pos += size_field_width

if pos + payload_size > len(data):

raise ValueError('Truncated')
records.append(

(i, p, data[pos:pos + payload_size]))

pos += payload_size

return records

--- Main entry point ---

def convert(input_path, output_dir, palette=None):

with open(input_path, 'rb') as f:

data = f.read()

records = parse_rle_file(data)

stem = os.path.splitext(

os.path.basename(input_path))[0]

os.makedirs(output_dir, exist_ok=True)

written = []

for img_idx, patch_idx, payload in records:

try:

w, h, rgba = decode_subimage(

payload, palette)

except Exception as e:

print(f' Warning: {e}',

42

RLE-DIB Format Specification Sartori

file=sys.stderr)

continue

if w == 0 or h == 0:

continue

if len(records) == 1:

name = f'{stem}.png'
else:

name = (f'{stem}_img{img_idx}'
f'_patch{patch_idx}.png')

out = os.path.join(output_dir, name)

write_png(out, w, h, rgba)

written.append(out)

print(f' Wrote {out} ({w}x{h})')
return written

def main():

parser = argparse.ArgumentParser(

description='Convert RLE-DIB files to PNG.')
parser.add_argument(

'input', nargs='+',
help='RLE-DIB .bin file(s) to convert')

parser.add_argument(

'-o', '--output-dir', default=None,

help='Output directory for PNG files')
parser.add_argument(

'-p', '--palette', default=None,

help='Path to syscolors.bin palette file')
args = parser.parse_args()

palette = None

if args.palette:

with open(args.palette, 'rb') as f:

palette = f.read()

for path in args.input:

out_dir = (args.output_dir

or os.path.dirname(

os.path.abspath(path)))

print(f'Converting {path} ...')
try:

written = convert(

path, out_dir, palette)

if not written:

print(' (no images produced)')
except Exception as e:

print(f' Error: {e}',

43

RLE-DIB Format Specification Sartori

file=sys.stderr)

if __name__ == '__main__':
main()

44

	Introduction
	Legal & Research Disclaimer
	Conventions and Terminology
	File Structure Overview
	File Header (6 octets)
	Magic Octets
	Image-Count Octet
	Format-Flags Octet
	size_field_width
	tile_type Nibble

	DPI-Flags Octet

	Tile-Type Semantics
	Sub-Image Count
	Grid Layout
	Fixed-Border Extraction

	Image-Record Table
	Record Format
	Record Ordering

	Sub-Image Payload
	Header Dword
	Geometry Fields
	Flag Bits
	row_ptr_width Field (bits[19:18])

	Pixel Data

	RLE Pixel Encoding
	Encoding Modes
	Row Navigation Index
	Bit-Cursor
	Run-Length Bit Width (B)
	Channel Interleaving
	Token Format
	Type 0 – Solid Fill
	Type 1 – Delta-Positive Run
	Type 2 – Delta-Negative Run
	Type 3 – Literal Run

	Alpha Meta-Decoder
	Alpha Type 0 / 3 – Transparent Run
	Alpha Type 1 – Regular (Explicit Alpha)
	Alpha Type 2 – Opaque Run
	Alpha Prev Value
	Color Channel Persistence

	Palette Post-Processing
	8-bit Palette Lookup
	5-bit Palette Lookup
	Grayscale Fallback
	Premultiplied Alpha

	DPI Scaling
	Draw Flags
	Rendering Pipeline
	Single-Image Path
	N-Slice Path

	Color Sources
	System-colour table

	Implementation Notes
	Row Navigation
	Delta Wrap-Around
	Five-Bit Precision
	Alpha Buffer Persistence
	8-bit Palette Channel Order
	Channel-to-Colour Mapping for Direct RGB
	Token Overflow
	Minimal PNG Exporter Recipe

	Security Considerations
	Appendices
	Annotated Hex Dump (rle_4000_287_1033.bin)
	Worked Decode Example
	Reference Python Implementation

